How do you find the value of #csc ((-3pi)/4)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. · Veddesh #phi# May 21, 2015 Note #pi=180^circ# #csc ((-3pi)/4) = 1/sin((-3pi)/4)# On the trig unit circle: #sin ((-3pi)/4) = - sin ((pi)/4) =-sin(180^circ/4)=-sin(45^circ)= -sqrt2/2# #csc ((-3pi)/4) = -2/sqrt2 = -sqrt2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 6767 views around the world You can reuse this answer Creative Commons License